私有化部署 Llama3 大模型, 支持 API 访问

Ducafecat
8 min readApr 26, 2024

--

私有化部署 Llama3 大模型, 支持 API 访问

视频

https://youtu.be/L--XLpc452I

https://www.bilibili.com/video/BV1wD421n75p/

前言

原文 https://ducafecat.com/blog/llama3-model-api-local

通过 ollama 本地运行 Llama3 大模型其实对我们开发来说很有意义,你可以私有化放服务上了。

然后通过 api 访问,来处理我们的业务,比如翻译多语言、总结文章、提取关键字等等。

你也可以安装 enchanted 客户端去直接访问这个服务 api 使用。

参考

https://llama.meta.com/llama3/

https://ollama.com/

https://github.com/ollama/ollama

https://github.com/ollama/ollama/blob/main/docs/api.md

https://github.com/sugarforever/chat-ollama

https://github.com/AugustDev/enchanted

Llama3

https://llama.meta.com/llama3/

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

安全性

https://llama.meta.com/trust-and-safety/

https://www.meta.ai/

步骤

安装 ollama

https://ollama.com/

安装 Llama3 8b 模型

https://ollama.com/library

https://ollama.com/library/llama3

模型选择

安装命令

$ ollama run llama3

访问 api 服务

https://github.com/ollama/ollama/blob/main/docs/api.md

curl http://localhost:11434/api/generate -d '{
"model":"llama3",
"prompt": "请分别翻译成中文、韩文、日文 -> Meta Llama 3: The most capable openly available LLM to date",
"stream": false
}'

参数解释如下:

  • model(必需):模型名称。
  • prompt:用于生成响应的提示文本。
  • images(可选):包含多媒体模型(如llava)的图像的base64编码列表。

高级参数(可选):

  • format:返回响应的格式。目前仅支持json格式。
  • options:模型文件文档中列出的其他模型参数,如温度(temperature)。
  • system:系统消息,用于覆盖模型文件中定义的系统消息。
  • template:要使用的提示模板,覆盖模型文件中定义的模板。
  • context:从先前的/generate请求返回的上下文参数,可以用于保持简短的对话记忆。
  • stream:如果为false,则响应将作为单个响应对象返回,而不是一系列对象流。
  • raw:如果为true,则不会对提示文本应用任何格式。如果在请求API时指定了完整的模板化提示文本,则可以使用raw参数。
  • keep_alive:控制模型在请求后保持加载到内存中的时间(默认为5分钟)。

返回 json 数据

{
"model": "llama3",
"created_at": "2024-04-23T08:05:11.020314Z",
"response": "Here are the translations:\n\n**Chinese:** 《Meta Llama 3》:迄今最强大的公开可用的LLM\n\n**Korean:** 《Meta Llama 3》:현재 가장 강력한 공개 사용 가능한 LLM\n\n**Japanese:**\n\n《Meta Llama 3》:現在最強の公開使用可能なLLM\n\n\n\nNote: (Meta Llama 3) is a literal translation, as there is no direct equivalent for \"Meta\" in Japanese. In Japan, it's common to use the English term \"\" or \"\" when referring to Meta.",
"done": true,
"context": [
...
],
"total_duration": 30786629492,
"load_duration": 3000782,
"prompt_eval_count": 32,
"prompt_eval_duration": 6142245000,
"eval_count": 122,
"eval_duration": 24639975000
}

返回值的解释如下:

  • total_duration:生成响应所花费的总时间。
  • load_duration:以纳秒为单位加载模型所花费的时间。
  • prompt_eval_count:提示文本中的标记(tokens)数量。
  • prompt_eval_duration:以纳秒为单位评估提示文本所花费的时间。
  • eval_count:生成响应中的标记数量。
  • eval_duration:以纳秒为单位生成响应所花费的时间。
  • context:用于此响应中的对话编码,可以在下一个请求中发送,以保持对话记忆。
  • response:如果响应是以流的形式返回的,则为空;如果不是以流的形式返回,则包含完整的响应。

要计算生成响应的速度,以标记数每秒(tokens per second,token/s)为单位,可以将 eval_count / eval_duration 进行计算。

ollama 生态

https://github.com/ollama/ollama

  • 客户端 桌面、Web
  • 命令行工具
  • 数据库工具
  • 包管理工具
  • 类库

桌面 enchanted 客户端

https://github.com/AugustDev/enchanted

设置服务器地址

提问使用

代码

https://github.com/ollama/ollama

小结

感谢阅读本文

如果有什么建议,请在评论中让我知道。我很乐意改进。

flutter 学习路径

© 猫哥 ducafecat.com

end

--

--